Search results for "Fingerprint Verification Competition"
showing 6 items of 6 documents
Morphological Enhancement and Triangular Matching for Fingerprint Recognition
2008
Among the principal problems for realizing a robust Automated Fingerprint Identification System (AFIS) there are the images quality and matching algorithms. In this paper a fingerprint enhancement algorithm based on morphological filter and a triangular matching are introduced. The enhancement phase is based on tree steps: directional decomposition, morphological filter and composition. For the matching phase a global transformation to overcame the effects of rotation, displacement and deformation between acquired and stored fingerprint is performed using the number of similar triangular, having fingerprint minutiae as vertexes. The performance of the proposed approach has been evaluated on…
Fingerprint image enhancement using directional morphological filter
2005
Fingerprint images quality enhancement is a topic phase to ensure good performance in an automatic fingerprint identification system (AFIS) based on minutiae matching. In this paper a new fingerprint enhancement algorithm based on morphological filter is introduced. The algorithm is based on three steps: directional decomposition, morphological filter and composition. The performance of the proposed approach has been evaluated on two sets of images: the first one is DB3 database from Fingerprint Verification Competition (FVC) and the second one is self collected using an optical scanner
Fingerprint Quality Evaluation in a Novel Embedded Authentication System for Mobile Users
2015
The way people access resources, data and services, is radically changing using modern mobile technologies. In this scenario, biometry is a good solution for security issues even if its performance is influenced by the acquired data quality. In this paper, a novel embedded automatic fingerprint authentication system (AFAS) for mobile users is described. The goal of the proposed system is to improve the performance of a standard embedded AFAS in order to enable its employment in mobile devices architectures. The system is focused on the quality evaluation of the raw acquired fingerprint, identifying areas of poor quality. Using this approach, no image enhancement process is needed after the …
An Advanced Technique for User Identification Using Partial Fingerprint
2013
User identification is a very interesting and complex task. Invasive biometrics is based on traits uniqueness and immutability over time. In forensic field, fingerprints have always been considered an essential element for personal recognition. The traditional issue is focused on full fingerprint images matching. In this paper an advanced technique for personal recognition based on partial fingerprint is proposed. This system is based on fingerprint local analysis and micro-features, endpoints and bifurcations, extraction. The proposed approach starts from minutiae extraction from a partial fingerprint image and ends with the final matching score between fingerprint pairs. The computation o…
Introducing Pseudo-Singularity Points for Efficient Fingerprints Classification and Recognition
2010
Fingerprint classification and matching are two key issues in automatic fingerprint recognition. Generally, fingerprint recognition is based on a set of relevant local characteristics, such as ridge ending and bifurcation (minutiae). Fingerprint classification is based on fingerprint global features, such as core and delta singularity points. Unfortunately, singularity points are not always present in a fingerprint image: the acquisition process is not ideal, so that the fingerprint is broken, or the fingerprint belongs to the arch class. In the above cases, pseudo-singularity-points will be detected and extracted to make possible fingerprint classification and matching. As result, fingerpr…
A Frequency-based Approach for Features Fusion in Fingerprint and Iris Multimodal Biometric Identification Systems
2010
The basic aim of a biometric identification system is to discriminate automatically between subjects in a reliable and dependable way, according to a specific-target application. Multimodal biometric identification systems aim to fuse two or more physical or behavioral traits to provide optimal False Acceptance Rate (FAR) and False Rejection Rate (FRR), thus improving system accuracy and dependability. In this paper, an innovative multimodal biometric identification system based on iris and fingerprint traits is proposed. The paper is a state-of-the-art advancement of multibiometrics, offering an innovative perspective on features fusion. In greater detail, a frequency-based approach result…